Таблица основных формул определенного интеграла. Основные формулы и методы интегрирования

В школе у многих не получается решить интегралы или возникают какие-либо трудности с ними. Данная статья поможет вам в этом разобраться, так как в ней вы найдете все таблицы интегралов .

Интеграл является одним из главных вычислений и понятием в математическом анализе. Его появление получилось от двух целей:
Первая цель - восстановить функцию с помощью ее производной.
Вторая цель - вычисление площади, находящейся на расстоянии от графика к функции f(x) на прямой где, а больше или равна х больше или равен b и ось абсцисс.

Данные цели подводят нас к определенным и неопределенным интегралам. Связь между данными интегралами лежит в поиске свойств и вычислении. Но все течет и все меняется со временем, находились новые пути решения, выявлялись дополнения тем самым приводя определенные и неопределенные интегралы к иным формам интегрирования.

Что такое неопределенный интеграл спросите Вы. Это первообразная функция F(x) одной переменной x в интервале а больше х больше b. называется любой функцией F(x), в данном интервале для любого обозначения х, производная равняется F(x). Понятно что F(x) первообразная для f(x) в промежутке а больше х больше b. Значит F1(x) = F(x) + C. С -является любым постоянным и первообразным для f(x) в данном интервале. Данное утверждение обратимо, для функции f(x) - 2 первообразные отличаются только постоянной. Опираясь на теорему интегрального исчисления получается, что каждая непрерывная в интервале a

Определенный интеграл понимается как предел в интегральных суммах, или в ситуации заданной функции f(x) определенной на некоторой прямой (а,b) имея на нем первообразную F, означающую разность ее выражений в концах данной прямой F(b) - F(a).

Для наглядности изучения данной темы, предлагаю посмотреть видео. В нем подробно рассказывается и показывается как находить интегралы.

Каждая таблица интегралов сама по себе очень полезна, так как помогает в решении конкретного вида интегралов.






Все возможные виды канцтоваров и не только. Вы можете приобрести через интернет-магазин v-kant.ru. Либо просто перейдите по ссылке Канцтовары Самара (http://v-kant.ru) качество и цены Вас приятно удивят.

Основные формулы и методы интегрирования. Правило интегрирования суммы или разности. Вынесение постоянной за знак интеграла. Метод замены переменной. Формула интегрирования по частям. Пример решения задачи.

Ниже перечислены четыре основных метода интегрирования.

1) Правило интегрирования суммы или разности.
.
Здесь и далее u, v, w - функции от переменной интегрирования x .

2) Вынесение постоянной за знак интеграла.
Пусть c - постоянная, не зависящая от x . Тогда ее можно вынести за знак интеграла.

3) Метод замены переменной.
Рассмотрим неопределенный интеграл .
Если удастся подобрать такую функцию φ(x) от x , так что
,
то, выполнив замену переменной t = φ(x) , имеем
.

4) Формула интегрирования по частям.
,
где u и v - это функции от переменной интегрирования.

Конечная цель вычисления неопределенных интегралов - это, путем преобразований, привести заданный интеграл к простейшим интегралам, которые называются табличными. Табличные интегралы выражаются через элементарные функции по известным формулам.
См. Таблица интегралов >>>

Пример

Вычислить неопределенный интеграл

Решение

Замечаем, что подынтегральная функция является суммой и разностью трех членов:
, и .
Применяем метод 1 .

Далее замечаем, что подынтегральные функции новых интегралов умножены на постоянные 5, 4, и 2 , соответственно. Применяем метод 2 .

В таблице интегралов находим формулу
.
Полагая n = 2 , находим первый интеграл.

Перепишем второй интеграл в виде
.
Замечаем, что . Тогда

Применяем третий метод. Делаем замену переменной t = φ(x) = ln x .
.
В таблице интегралов находим формулу

Поскольку переменная интегрирования может обозначаться любой буквой, то

Перепишем третий интеграл в виде
.
Применяем формулу интегрирования по частям.
Положим .
Тогда
;
;

;
;
.

Научиться интегрированию не сложно. Для этого необходимо лишь усвоить определенный, достаточно небольшой, набор правил и разработать у себя своего рода чутье. Выучить правила и формулы, конечно же, легко, но понять, где и когда нужно применить то или иное правило интегрирования или дифференцирования, достаточно затруднительно. В этом, собственно, и состоит умение интегрировать.

1. Первообразная. Неопределенный интеграл.

Предполагается, что к моменту чтения этой статьи читатель уже обладает некими навыками дифференцирования (т.е. нахождения производных).

Определение 1.1: Функция называется первообразной функции если выполняется равенство:

Комментарии: > Ударение в слове “первообразная” можно ставить двумя способами: первоо бразная или первообра зная.

Свойство 1: Если функция является первообразной функции , то функция также является первообразной функции .

Доказательство: Докажем это из определения первообразной. Найдем производную функции :

Первое слагаемое по определению 1.1 равно , а второе слагаемое является производной константы, которая равна 0.

.

Подведем итог. Запишем начало и конец цепочки равенств:

Таким образом, производная функции равна , а значит, по определению, является её первообразной. Свойство доказано.

Определение 1.2: Неопределенным интегралом функции называется всё множество первообразных этой функции. Это обозначается так:

.

Рассмотрим названия каждой части записи подробно:

— общее обозначение интеграла,

— подинтегральное (подынтегральное) выражение, интегрируемая функция.

— дифференциал, и выражение после буквы , в данном случае это , будем называть переменной интегрирования.

Комментарии: Ключевые слова в этом определении – “все множество”. Т.е. если в будущем в ответе не будет записано это самое «плюс С», то проверяющий имеет полное право не зачесть это задание, т.к. необходимо найти все множество первообразных, а если С отсутствует, то найдена только одна.

Вывод: Для того, чтобы проверить правильно ли вычислен интеграл, необходимо найти от результата производную. Она должна совпасть с подынтегральным выражением.
Пример:
Задание: Вычислить неопределенный интеграл и выполнить проверку.

Решение:

То, как вычислен этот интеграл, в данном случае не имеет никакого значения. Предположим, что это откровение свыше. Наша задача – показать, что откровение нас не обмануло, а сделать это можно с помощью проверки.

Проверка:

При дифференцировании результата получили подынтегральное выражение, значит, интеграл вычислен верно.

2. Начало. Таблица интегралов.

Для интегрирования не нужно каждый раз вспоминать функцию, производная которой равна данной подынтегральной функции (т.е. использовать непосредственно определение интеграла). В каждом сборнике задач или учебнике по математическому анализу приведена список свойств интегралов и таблица простейших интегралов.

Перечислим свойства.

Свойства:
1.
Интеграл от дифференциала равен переменной интегрирования.
2. , где — константа.
Множитель-константу можно выносить за знак интеграла.

3.
Интеграл суммы равен сумме интегралов (если количество слагаемых конечно).
Таблица интегралов:

1. 10.
2. 11.
3. 12.
4. 13.
5. 14.
6. 15.
7. 16.
8. 17.
9. 18.

Чаще всего задача состоит в том, чтобы с помощью свойств и формул свести исследуемый интеграл к табличному.

Пример:

[ Воспользуемся третьим свойством интегралов и запишем в виде суммы трех интегралов.]

[ Воспользуемся вторым свойством и вынесем константы за знак интегрирования.]

[ В первом интеграле воспользуемся табличным интегралом №1 (n=2), во втором – той же формулой, но n=1, а для третьего интеграла можно или воспользоваться все тем же табличным интегралом, но с n=0, или первым свойством.]
.
Проверим дифференцированием:

Получено исходное подынтегральное выражение, следовательно, интегрирование выполнено без ошибок (и даже не забыто прибавление произвольной константы С).

Табличные интегралы необходимо выучить наизусть по одной простой причине – дабы знать, к чему стремиться, т.е. знать цель преобразования данного выражения.

Приведем еще несколько примеров:
1)
2)
3)

Задачи для самостоятельного решения:

Задание 1. Вычислить неопределенный интеграл:

+ Показать/спрятать подсказку №1.

1) Воспользоваться третьим свойством и представить этот интеграл как сумму трех интегралов.

+ Показать/спрятать подсказку №2.

+ Показать/спрятать подсказку №3.

3) Для первых двух слагаемых воспользоваться первым табличным интегралом, а для третьего – вторым табличным.

+ Показать/спрятать Решение и Ответ.

4) Решение:

Ответ:

На этой странице вы найдёте:

1. Собственно, таблицу первообразных — её можно скачать в формате PDF и распечатать;

2. Видео, посвящённое тому, как этой таблицей пользоваться;

3. Кучу примеров вычисления первообразной из различных учебников и контрольных работ.

В самом видео мы разберём множество задач, где требуется посчитать первообразные функций, зачастую довольно сложных, но главное — не являющихся степенными. Все функции, сведённые в таблицу, предложенную выше, необходимо знать наизусть, подобно производным. Без них невозможно дальнейшее изучение интегралов и их применение для решения практических задач.

Сегодня мы продолжаем заниматься первообразными и переходим у чуть более сложной теме. Если в прошлый раз мы рассматривали первообразные только от степенных функций и чуть более сложных конструкций, то сегодня мы разберем тригонометрию и многое другое.

Как я говорил на прошлом занятии, первообразные в отличие от производных, никогда не решаются «напролом» с помощью каких-либо стандартных правил. Более того, плохая новость состоит в том, что в отличие от производной, первообразная вообще может не считаться. Если мы напишем совершенно случайную функцию и попытаемся найти ее производную, то это с очень большой вероятностью у нас получится, а вот первообразная практически никогда в этом случае не посчитается. Но есть и хорошая новость: существует довольно обширный класс функций, называемых элементарными, первообразные от которых очень легко считаются. А все прочие более сложные конструкции, которые дают на всевозможных контрольных, самостоятельных и экзаменах, на самом деле, составляются из этих элементарных функций путем сложения, вычитания и других несложных действий. Первообразные таких функций давно посчитаны и сведены в специальные таблицы. Именно с такими функциями и таблицами мы будем сегодня работать.

Но начнем мы, как всегда, с повторения: вспомним, что такое первообразная, почему их бесконечно много и как определить их общий вид. Для этого я подобрал две простенькие задачки.

Решение легких примеров

Пример № 1

Сразу заметим, что $\frac{\text{ }\!\!\pi\!\!\text{ }}{6}$ и вообще наличие $\text{ }\!\!\pi\!\!\text{ }$ сразу намекает нам, что искомая первообразная функции связана с тригонометрией. И, действительно, если мы посмотрим в таблицу, то обнаружим, что $\frac{1}{1+{{x}^{2}}}$ — не что иное как $\text{arctg}x$. Так и запишем:

Для того чтобы найти, необходимо записать следующее:

\[\frac{\pi }{6}=\text{arctg}\sqrt{3}+C\]

\[\frac{\text{ }\!\!\pi\!\!\text{ }}{6}=\frac{\text{ }\!\!\pi\!\!\text{ }}{3}+C\]

Пример № 2

Здесь также речь идет о тригонометрических функциях. Если мы посмотрим в таблицу, то, действительно, так и получится:

Нам нужно среди всего множества первообразных найти ту, которая проходит через указанную точку:

\[\text{ }\!\!\pi\!\!\text{ }=\arcsin \frac{1}{2}+C\]

\[\text{ }\!\!\pi\!\!\text{ }=\frac{\text{ }\!\!\pi\!\!\text{ }}{6}+C\]

Давайте окончательно запишем:

Вот так все просто. Единственная проблема состоит в том, для того чтобы считать первообразные простых функций, нужно выучить таблицу первообразных. Однако после изучения таблицы производных для вас, я думаю, это не будет проблемой.

Решение задач, содержащих показательную функцию

Для начала запишем такие формулы:

\[{{e}^{x}}\to {{e}^{x}}\]

\[{{a}^{x}}\to \frac{{{a}^{x}}}{\ln a}\]

Давайте посмотрим, как это все работает на практике.

Пример № 1

Если мы посмотрим на содержимое скобок, то заметим, что в таблице первообразных нет такого выражения, чтобы ${{e}^{x}}$ стояло в квадрате, поэтому этот квадрат необходимо раскрыть. Для этого воспользуемся формулами сокращенного умножения:

Давайте найдем первообразную для каждого из слагаемых:

\[{{e}^{2x}}={{\left({{e}^{2}} \right)}^{x}}\to \frac{{{\left({{e}^{2}} \right)}^{x}}}{\ln {{e}^{2}}}=\frac{{{e}^{2x}}}{2}\]

\[{{e}^{-2x}}={{\left({{e}^{-2}} \right)}^{x}}\to \frac{{{\left({{e}^{-2}} \right)}^{x}}}{\ln {{e}^{-2}}}=\frac{1}{-2{{e}^{2x}}}\]

А теперь соберем все слагаемые в единое выражение и получим общую первообразную:

Пример № 2

На этот раз степень уже побольше, поэтому формула сокращенного умножения будет довольно сложной. Итак раскроем скобки:

Теперь от этой конструкции попробуем взять первообразную от нашей формулы:

Как видите, в первообразных показательной функции нет ничего сложного и сверхъестественного. Все один считаются через таблицы, однако внимательные ученики наверняка заметят, что первообразная ${{e}^{2x}}$ намного ближе просто к ${{e}^{x}}$ нежели к ${{a}^{x}}$. Так, может быть, существует какой-то более специальное правило, позволяющее, зная первообразную ${{e}^{x}}$, найти ${{e}^{2x}}$? Да, такое правило существует. И, более того, оно является неотъемлемой частью работы с таблицей первообразных. Его мы сейчас разберем на примере тех же самых выражений, с которыми мы только что работали.

Правила работы с таблицей первообразных

Еще раз выпишем нашу функцию:

В предыдущем случае мы использовали для решения следующую формулу:

\[{{a}^{x}}\to \frac{{{a}^{x}}}{\operatorname{lna}}\]

Но сейчас поступим несколько иначе: вспомним, на каком сновании ${{e}^{x}}\to {{e}^{x}}$. Как уже и говорил, потому что производная ${{e}^{x}}$ — это не что иное как ${{e}^{x}}$, поэтому ее первообразная будет равна тому же самому ${{e}^{x}}$. Но проблема в том, что у нас ${{e}^{2x}}$ и ${{e}^{-2x}}$. Сейчас попытаемся найти производную ${{e}^{2x}}$:

\[{{\left({{e}^{2x}} \right)}^{\prime }}={{e}^{2x}}\cdot {{\left(2x \right)}^{\prime }}=2\cdot {{e}^{2x}}\]

Давайте еще раз перепишем нашу конструкцию:

\[{{\left({{e}^{2x}} \right)}^{\prime }}=2\cdot {{e}^{2x}}\]

\[{{e}^{2x}}={{\left(\frac{{{e}^{2x}}}{2} \right)}^{\prime }}\]

А это значит, что при нахождении первообразной ${{e}^{2x}}$ мы получим следующее:

\[{{e}^{2x}}\to \frac{{{e}^{2x}}}{2}\]

Как видите, мы получили тот же результат, что и ранее, однако не воспользовались формулой для нахождения ${{a}^{x}}$. Сейчас это может показаться глупостью: зачем усложнять вычисления, когда есть стандартная формула? Однако в чуть более сложных выражениях вы убедитесь, что этот прием очень эффективен, т.е. использование производных для нахождения первообразных.

Давайте в качестве разминки аналогичным способом найдем первообразную от ${{e}^{2x}}$:

\[{{\left({{e}^{-2x}} \right)}^{\prime }}={{e}^{-2x}}\cdot \left(-2 \right)\]

\[{{e}^{-2x}}={{\left(\frac{{{e}^{-2x}}}{-2} \right)}^{\prime }}\]

При вычислении наша конструкция запишется следующим образом:

\[{{e}^{-2x}}\to -\frac{{{e}^{-2x}}}{2}\]

\[{{e}^{-2x}}\to -\frac{1}{2\cdot {{e}^{2x}}}\]

Мы получили точно тот же результат, но пошли при этом по другому пути. Именно этот путь, который сейчас кажется нам чуть более сложным, в дальнейшем окажется более эффективным для вычисления более сложных первообразных и использование таблиц.

Обратите внимание! Это очень важный момент: первообразные как и производные можно посчитать множеством различных способов. Однако если все вычисления и выкладки будут равны, то ответ получится одним и тем же. Мы убедились в этом только что на примере ${{e}^{-2x}}$ — с одной стороны мы посчитали эту первообразную «напролом», воспользовавшись определением и посчитав ее с помощью преобразований, с другой стороны, мы вспомнили, что ${{e}^{-2x}}$ может быть представлено как ${{\left({{e}^{-2}} \right)}^{x}}$ и уже потом воспользовались первообразной для функции ${{a}^{x}}$. Тем не менее, после всех преобразований результат получился одним и тем же, как и предполагалось.

А теперь, когда мы все это поняли, пора перейти к чему-то более существенному. Сейчас мы разберем две простенькие конструкций, однако прием, который будет заложен при их решении, является более мощным и полезным инструментом, нежели простое «беганье» между соседними первообразными из таблицы.

Решение задач: находим первообразную функции

Пример № 1

Давайте сумму, которая стоит в числители, разложи на три отдельных дроби:

Это довольно естественный и понятный переход — у большинства учеников проблем с ним не возникает. Перепишем наше выражение следующим образом:

А теперь вспомним такую формулу:

В нашем случае мы получим следующее:

Чтобы избавиться от всех этих трехэтажных дробей, предлагаю поступить следующим образом:

Пример № 2

В отличие от предыдущей дроби в знаменателе стоит не произведение, а сумма. В этом случае мы уже не можем разделить нашу дробь на сумму нескольких простых дробей, а нужно каким-то образом постараться сделать так, чтобы в числителе стояло примерно такое же выражение как в знаменателе. В данном случае сделать это довольно просто:

Такая запись, которая на языке математики называется «добавление нуля», позволит нам вновь разделить дробь на два кусочка:

Теперь найдем то, что искали:

Вот и все вычисления. Несмотря на кажущуюся большую сложность, чем в предыдущей задаче, объем вычислений получился даже меньшим.

Нюансы решения

И вот в этом кроется основная сложность работы с табличными первообразными, особенно это заметно на второй задаче. Дело в том, что для того чтобы выделить какие-то элементы, которые легко считаются через таблицу, нам нужно знать, что конкретно мы ищем, и именно в поиске этих элементов и состоит все вычисление первообразных.

Другими словами, недостаточно просто зазубрить таблицу первообразных — нужно уметь видеть что-то, чего пока еще нет, но что подразумевал автор и составитель этой задачи. Именно поэтому многие математики, учителя и профессора постоянно спорят: «А что такое взятие первообразных или интегрирование — это просто инструмент либо это настоящее искусство?» На самом деле, лично на мой взгляд, интегрирование — это никакое не искусство — в нем нет ничего возвышенного, это просто практика и еще раз практика. И чтобы попрактиковаться, давайте решим еще три более серьезных примера.

Тренируемся в интегрировании на практике

Задача № 1

Запишем такие формулы:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

\[\frac{1}{x}\to \ln x\]

\[\frac{1}{1+{{x}^{2}}}\to \text{arctg}x\]

Давайте запишем следующее:

Задача № 2

Перепишем следующим образом:

Итого первообразная будет равна:

Задача № 3

Сложность этой задачи состоит в том, что в отличие от предыдущих функций сверху вообще отсутствует какая-либо переменная $x$, т.е. нам непонятно, что добавлять, вычитать, чтобы получить хоть что-то похожее на то, что стоит снизу. Однако, на самом деле, это выражение считается даже проще, чем любое выражение из предыдущих конструкций, потому что данную функцию можно переписать следующим образом:

Возможно, вы сейчас спросите: а почему эти функции равны? Давайте проверим:

Еще перепишем:

Немного преобразуем наше выражение:

И когда я все это объясняю своим ученикам, практически всегда возникает одна и та же проблема: с первой функцией все более-менее понятно, со второй тоже при везении или практике можно разобраться, но каким альтернативным сознанием нужно обладать, чтобы решить третий пример? На самом деле, не пугайтесь. Тот прием, который мы использовали при вычислении последней первообразной, называется «разложение функции на простейшие», и это очень серьезный прием, и ему будет посвящен отдельный видеоурок.

А пока предлагаю вернуться к тому, что мы только что изучили, а именно, к показательным функциям и несколько усложнить задачи с их содержанием.

Более сложные задачи на решение первообразных показательных функций

Задача № 1

Заметим следующее:

\[{{2}^{x}}\cdot {{5}^{x}}={{\left(2\cdot 5 \right)}^{x}}={{10}^{x}}\]

Чтобы найти первообразной этого выражения, достаточно просто воспользоваться стандартной формулой — ${{a}^{x}}\to \frac{{{a}^{x}}}{\ln a}$.

В нашем случае первообразная будет такая:

Разумеется, на фоне той конструкции, которую мы решали только что, эта выглядит более простой.

Задача № 2

Опять же, несложно заметить, что эту функцию несложно разделить на два отдельных слагаемых — две отдельных дроби. Перепишем:

Осталось найти первообразную от каждого от этих слагаемых по вышеописанной формуле:

Несмотря на кажущуюся большую сложность показательных функций по сравнению со степенными, общий объем вычислений и выкладок получился гораздо проще.

Конечно, для знающих учеников то, что мы только что разобрали (особенно на фоне того, что мы разобрали до этого), может показаться элементарными выражениями. Однако выбирая именно две эти задачи для сегодняшнего видеоурока, я не ставил себе цель рассказать вам еще один сложный и навороченный прием — все, что я хотел вам показать, так это то, что не стоит бояться использовать стандартные приемы алгебры для преобразования исходных функций.

Использование «секретного» приема

В заключение хотелось бы разобрать еще один интересный прием, который, с одной стороны выходит за рамки того, что мы сегодня в основном разбирали, но, с другой стороны, он, во-первых, отнюдь не сложный, т.е. его могут освоить даже начинающие ученики, а, во-вторых, он довольно часто встречается на всевозможных контрольных и самостоятельных работах, т.е. знание его будет очень полезно в дополнение к знанию таблицы первообразных.

Задача № 1

Очевидно, что перед нами что-то очень похожее на степенную функцию. Как нам поступить в этом случае? Давайте задумаемся: $x-5$ отличается от $x$ не так уж и сильно — просто добавили $-5$. Запишем так:

\[{{x}^{4}}\to \frac{{{x}^{5}}}{5}\]

\[{{\left(\frac{{{x}^{5}}}{5} \right)}^{\prime }}=\frac{5\cdot {{x}^{4}}}{5}={{x}^{4}}\]

Давайте попробуем найти производную от ${{\left(x-5 \right)}^{5}}$:

\[{{\left({{\left(x-5 \right)}^{5}} \right)}^{\prime }}=5\cdot {{\left(x-5 \right)}^{4}}\cdot {{\left(x-5 \right)}^{\prime }}=5\cdot {{\left(x-5 \right)}^{4}}\]

Отсюда следует:

\[{{\left(x-5 \right)}^{4}}={{\left(\frac{{{\left(x-5 \right)}^{5}}}{5} \right)}^{\prime }}\]

В таблице нет такого значения, поэтому мы сейчас сами вывели эту формулу, используя стандартную формулу первообразной для степенной функции. Давайте так и запишем ответ:

Задача № 2

Многим ученикам, которые посмотрят на первое решение, может показаться, что все очень просто: достаточно заменить в степенной функции $x$ на линейное выражение, и все станет на свои места. К сожалению, все не так просто, и сейчас мы в этом убедимся.

По аналогии с первым выражением запишем следующее:

\[{{x}^{9}}\to \frac{{{x}^{10}}}{10}\]

\[{{\left({{\left(4-3x \right)}^{10}} \right)}^{\prime }}=10\cdot {{\left(4-3x \right)}^{9}}\cdot {{\left(4-3x \right)}^{\prime }}=\]

\[=10\cdot {{\left(4-3x \right)}^{9}}\cdot \left(-3 \right)=-30\cdot {{\left(4-3x \right)}^{9}}\]

Возвращаясь к нашей производной, мы можем записать:

\[{{\left({{\left(4-3x \right)}^{10}} \right)}^{\prime }}=-30\cdot {{\left(4-3x \right)}^{9}}\]

\[{{\left(4-3x \right)}^{9}}={{\left(\frac{{{\left(4-3x \right)}^{10}}}{-30} \right)}^{\prime }}\]

Отсюда сразу следует:

Нюансы решения

Обратите внимание: если в прошлый раз по сути ничего не поменялось, то во втором случае вместо $-10$ появилось $-30$. На что отличается $-10$ и $-30$? Очевидно, что на множитель $-3$. Вопрос: откуда он взялся? Присмотревшись можно увидеть, что она взялась в результате вычислений производной сложной функции — тот коэффициент, который стоял при $x$, появляется в первообразной внизу. Это очень важное правило, которое я изначально вообще не планировал разбирать в сегодняшнем видеоуроке, но без него изложение табличных первообразных было бы неполным.

Итак, давайте еще раз. Пусть есть наша основная степенная функция:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

А теперь вместо $x$ давайте подставим выражение $kx+b$. Что тогда произойдет? Нам нужно найти следующее:

\[{{\left(kx+b \right)}^{n}}\to \frac{{{\left(kx+b \right)}^{n+1}}}{\left(n+1 \right)\cdot k}\]

На каком основании мы это утверждаем? Очень просто. Давайте найдем производную написанной выше конструкции:

\[{{\left(\frac{{{\left(kx+b \right)}^{n+1}}}{\left(n+1 \right)\cdot k} \right)}^{\prime }}=\frac{1}{\left(n+1 \right)\cdot k}\cdot \left(n+1 \right)\cdot {{\left(kx+b \right)}^{n}}\cdot k={{\left(kx+b \right)}^{n}}\]

Это то самое выражение, которое изначально и было. Таким образом, эта формула тоже верна, и ею можно дополнить таблицу первообразных, а лучше просто запомнить всю таблицу.

Выводы из «секретного: приема:

  • Обе функции, которые мы только что рассмотрели, на самом деле, могут быть сведены к первообразным, указанным в таблице, путем раскрытия степеней, но если с четвертой степенью мы еще более-менее как-то справимся, то вот девятую степень я бы вообще не рискнул раскрывать.
  • Если бы мы раскрыли степени, то мы бы получили такой объем вычислений, что простая задача заняла бы у нас неадекватно большое количество времени.
  • Именно поэтому такие задачи, внутри которых стоят линейные выражения, не нужно решать «напролом». Как только вы встречаете первообразную, которая отличается от той, что в таблице, лишь наличием выражения $kx+b$ внутри, сразу вспоминайте написанную выше формулу, подставляйте ее в вашу табличную первообразную, и все у вас получится намного быстрее и проще.

Естественно, в силу сложности и серьезности этого приема мы еще неоднократно вернемся к его рассмотрению в будущих видеоуроках, но на сегодня у меня все. Надеюсь, этот урок действительно поможет тем ученикам, которые хотят разобраться в первообразных и в интегрировании.

Первообразная функция и неопределённый интеграл

Факт 1. Интегрирование - действие, обратное дифференцированию, а именно, восстановление функции по известной производной этой функции. Восстановленная таким образом функция F (x ) называется первообразной для функции f (x ).

Определение 1. Функция F (x f (x ) на некотором промежутке X , если для всех значений x из этого промежутка выполняется равенство F "(x )=f (x ), то есть данная функция f (x ) является производной от первообразной функции F (x ). .

Например, функция F (x ) = sin x является первообразной для функции f (x ) = cos x на всей числовой прямой, так как при любом значении икса (sin x )" = (cos x ) .

Определение 2. Неопределённым интегралом функции f (x ) называется совокупность всех её первообразных . При этом употребляется запись

f (x )dx

,

где знак называется знаком интеграла, функция f (x ) – подынтегральной функцией, а f (x )dx – подынтегральным выражением.

Таким образом, если F (x ) – какая-нибудь первообразная для f (x ) , то

f (x )dx = F (x ) +C

где C - произвольная постоянная (константа).

Для понимания смысла множества первообразных функции как неопределённого интеграла уместна следующая аналогия. Пусть есть дверь (традиционная деревянная дверь). Её функция - "быть дверью". А из чего сделана дверь? Из дерева. Значит, множеством первообразных подынтегральной функции "быть дверью", то есть её неопределённым интегралом, является функция "быть деревом + С", где С - константа, которая в данном контексте может обозначать, например, породу дерева. Подобно тому, как дверь сделана из дерева при помощи некоторых инструментов, производная функции "сделана" из первообразной функции при помощи формулы, которую мы узнали, изучая производную .

Тогда таблица функций распространённых предметов и соответствующих им первообразных ("быть дверью" - "быть деревом", "быть ложкой" - "быть металлом" и др.) аналогична таблице основных неопределённых интегралов, которая будет приведена чуть ниже. В таблице неопределённых интегралов перечисляются распространённые функции с указанием первообразных, из которых "сделаны" эти функции. В части задач на нахождение неопределённого интеграла даны такие подынтегральные функции, которые без особых услилий могут быть проинтегрированы непосредственно, то есть по таблице неопределённых интегралов. В задачах посложнее подынтегральную функцию нужно предварительно преобразовать так, чтобы можно было использовать табличные интегралы.

Факт 2. Восстанавливая функцию как первообразную, мы должны учитывать произвольную постоянную (константу) C , а чтобы не писать список первообразной с различными константами от 1 до бесконечности, нужно записывать множество первообразных с произвольной константой C , например, так: 5x ³+С . Итак, произвольная постоянная (константа) входит в выражение первообразной, поскольку первообразная может быть функцией, например, 5x ³+4 или 5x ³+3 и при дифференцировании 4 или 3, или любая другая константа обращаются в нуль.

Поставим задачу интегрирования: для данной функции f (x ) найти такую функцию F (x ), производная которой равна f (x ).

Пример 1. Найти множество первообразных функции

Решение. Для данной функции первообразной является функция

Функция F (x ) называется первообразной для функции f (x ), если производная F (x ) равна f (x ), или, что одно и то же, дифференциал F (x ) равен f (x ) dx , т.е.

(2)

Следовательно, функция - первообразная для функции . Однако она не является единственной первообразной для . Ими служат также функции

где С – произвольная постоянная. В этом можно убедиться дифференцированием.

Таким образом, если для функции существует одна первообразная, то для неё существует бесконечное множество первообразных, отличающихся на постоянное слагаемое. Все первообразные для функции записываются в приведённом выше виде. Это вытекает из следующей теоремы.

Теорема (формальное изложение факта 2). Если F (x ) – первообразная для функции f (x ) на некотором промежутке Х , то любая другая первообразная для f (x ) на том же промежутке может быть представлена в виде F (x ) + C , где С – произвольная постоянная.

В следующем примере уже обращаемся к таблице интегралов, которая будет дана в параграфе 3, после свойств неопределённого интеграла. Делаем это до ознакомления со всей таблицей, чтобы была понятна суть вышеизложенного. А после таблицы и свойств будем пользоваться ими при интегрировании во всей полносте.

Пример 2. Найти множества первообразных функций:

Решение. Находим множества первообразных функций, из которых "сделаны" данные функции. При упоминании формул из таблицы интегралов пока просто примите, что там есть такие формулы, а полностью саму таблицу неопределённых интегралов мы изучим чуть дальше.

1) Применяя формулу (7) из таблицы интегралов при n = 3, получим

2) Используя формулу (10) из таблицы интегралов при n = 1/3, имеем

3) Так как

то по формуле (7) при n = -1/4 найдём

Под знаком интеграла пишут не саму функцию f , а её произведение на дифференциал dx . Это делается прежде всего для того, чтобы указать, по какой переменной ищется первообразная. Например,

, ;

здесь в обоих случаях подынтегральная функция равна , но её неопределённые интегралы в рассмотренных случаях оказываются различными. В первом случае эта функция рассматривается как функция от переменной x , а во втором - как функция от z .

Процесс нахождения неопределённого интеграла функции называется интегрированием этой функции.

Геометрический смысл неопределённого интеграла

Пусть требуется найти кривую y=F(x) и мы уже знаем,что тангенс угла наклона касательной в каждой её точке есть заданная функция f(x) абсциссы этой точки.

Согласно геометрическому смыслу производной, тангенс угла наклона касательной в данной точке кривой y=F(x) равен значению производной F"(x) . Значит, нужно найти такую функцию F(x) , для которой F"(x)=f(x) . Требуемая в задаче функция F(x) является первообразной от f(x) . Условию задачи удовлетворяет не одна кривая, а семейство кривых. y=F(x) - одна из таких кривых, а всякая другая кривая может быть получена из неё параллельным переносом вдоль оси Oy .

Назовём график первообразной функции от f(x) интегральной кривой. Если F"(x)=f(x) , то график функции y=F(x) есть интегральная кривая.

Факт 3. Неопределённый интеграл геометрически представлен семеством всех интегральных кривых , как на рисунке ниже. Удалённость каждой кривой от начала координат определяется произвольной постоянной (константой) интегрирования C .

Свойства неопределённого интеграла

Факт 4. Теорема 1. Производная неопределённого интеграла равна подынтегральной функции, а его дифференциал – подынтегральному выражению.

Факт 5. Теорема 2. Неопределённый интеграл от дифференциала функции f (x ) равен функции f (x ) с точностью до постоянного слагаемого , т.е.

(3)

Теоремы 1 и 2 показывают, что дифференцирование и интегрирование являются взаимно-обратными операциями.

Факт 6. Теорема 3. Постоянный множитель в подынтегральном выражении можно выносить за знак неопределённого интеграла , т.е.